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Abstract

We apply an inverse problem formulation to determine characteristics of a defect from a perturbed
electromagnetic interrogating signal. A defect (gap) inside of a dielectric material causes a disruption,
via reflections and refractions at the material interfaces, of the windowed interrogating signal. We model
the electromagnetic waves inside the material with Maxwell’s equations. This leads to a non-standard,
nonlinear optimization problem for the dimensions and location of the defect. Using simulations as
forward solves, we employ a Newton-based, iterative optimization scheme to a novel modified least-
squares objective function. Numerical results are given in tables and plots, standard errors are calculated,
and computational issues are addressed.

1 Introduction

The problem we consider is that of detecting a gap inside of a dielectric material using high frequency
electromagnetic interrogation. The idea is to observe the reflected and/or transmitted signals and use
the data to solve an inverse problem to determine certain characteristics of the gap, e.g., location and/or
width. Possible applications of this procedure include quality assurance in fabrication of critical dielectric
materials, or damage detection in aging materials for safety concerns. Further applications of electromagnetic
interrogation, as well as additional problem formulations and solutions, can be found in [2].

The particular motivation for this research is the detection of defects in the insulating foam on the fuel
tanks of the space shuttles in order to help eliminate the separation (delamination) of foam during shuttle
ascent. To this end we address the problem of detecting a single gap formed between a dielectric medium
and a supra-conducting backing representing the foam and the metallic tank, respectively. However, first we
develop our methodology on the slightly simpler problem of a gap formed in the interior of the foam (void),
where for simplicity, we ignore the reflections from the back boundary (i.e., we impose absorbing boundary
conditions instead). We also allow for the possibility in this case that the foam has been removed for testing,
and therefore we are able to place sensors both on the front and back sides of the foam.

To be applicable to real world problems we must eventually be able to solve these inverse problems with
length scales on the order of 20cm for the thickness of the foam, .2mm for the width of the gap, and a
wavelength of about 3mm. This wavelength corresponds to a frequency of 100GHz, which is the lower end
of the terahertz frequency range (.1 ∼ 10 × 1012Hz). The rationale for using this choice of frequency is
that higher frequencies are significantly attenuated in the materials which we are interested in interrogating.
Lower frequencies (larger wavelengths) have less resolution in detecting small gaps, and are less capable of
sharply distinguishing between air and foam which may have a high air content.

First we simplify the problem by considering a linearly polarized, pulsed interrogating signal which
reduces the problem to one spatial dimension. We then define an inverse problem for determining the gap’s
dimensions. We assume that we have data from sensors, located in front of and/or behind the material, that
record the electromagnetic signal after it is reflected from (or passes through) the material interfaces. We
compute simulated signals with approximations to the gap’s characteristics and apply an optimization routine
to a modified least squares error between this simulated signal and the given data. In our computations we
use Maxwell’s equations and a Debye polarization equation to model the signal, and solve these equations
using a Finite Element method in space and Finite Difference methods in time. Thus the optimization
routine finds those gap characteristics which generate a simulated signal that most closely matches the given
data. In this sense we determined an estimate to the “true” gap characteristics.
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Figure 1: Problem 1: Dielectric slab with a material gap in the interior. Possible sensors in front and behind.

In Section 2 we define the equations that we have chosen in order to model the electromagnetic waves
inside the material. We further distinguish between two problem types that we will address (denoted as
Problem 1 and Problem 2). Section 3 contains the details of our numerical methods for the simulations. We
introduce the inverse problem formulation for Problem 1 in Section 4, and later improve upon it in Section
4.2. Numerical results of the inverse problem are displayed in Section 4.3.

In Section 5 we begin addressing Problem 2. Similarities and differences between the computational
issues between the two problems are pointed out. A more sophisticated optimization method is described in
Section 5.3 and associated numerical results are given in Section 5.5. In Sections 5.5.1 and 5.5.2 we explore
the effects of adding random noise to the data, both relative and constant variance. In the latter, we compute
standard error estimates.

2 Problem Description

We interrogate an (infinitely long) slab of homogeneous nonmagnetic material by a polarized, windowed
signal (see [2] for details) in the THz frequency range (see Figure 1). We assume a wave normally incident
on a slab which is located in Ω = [z1, z4] with faces parallel to the x-y plane (see Figure 2). Note that we
employ the “method of mappings” (see [2]) in our computations, therefore we may assume 0 < z1 < z4 < 1.
We denote the vacuum outside of the material by Ω0. The electric field is polarized to have oscillations in
the x-z plane only. Restricting the problem to one dimension, we can write the electric and magnetic fields,
~E and ~H respectively, as follows

~E(t, ~x) = îE(t, z)

~H(t, ~x) = ĵH(t, z),

so that we are only concerned with the scalar values E(t, z) and H(t, z).
Maxwell’s equations then become:

∂E

∂z
= −µ0

∂H

∂t
(1a)

−∂H
∂z

=
∂D

∂t
+ σE + Js, (1b)
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Figure 2: The domain of the material slab: Ω = [z1, z4].

where D(t, z) is the electric flux density, µ0 is the magnetic permeability of free space, σ is the conductivity,
and Js is a source current density (determined by our interrogating signal). We take the partial derivative

of Equation (1a) with respect to z, and the partial of Equation (1b) with respect to t. Equating the ∂2H
∂z∂t

terms in each, and thus eliminating the magnetic field H, we have:

E′′ = µ0

(

D̈ + σĖ + J̇s

)

,

(where ′ denotes z derivatives and ˙ denotes time derivatives).
Note that we have neglected magnetic effects and we have let the total current density be J = Jc + Js,

where Jc = σE is the conduction current density given by Ohm’s law in the material.
For our source current, Js, we want to simulate a windowed pulse, i.e., a pulse that is allowed to oscillate

for one full period and then is truncated. Further, we want the pulse to originate only at z = 0, simulating
an infinite antenna at this location. Thus we define

Js(t, z) = δ(z)sin(ωt)I[0,tf ](t),

where ω is the frequency of the pulse, tf = 2π/ω is fixed, I[0,tf ](t) represents an indicator function which is
1 when 0 ≤ t ≤ tf and zero otherwise, and δ(z) is the Dirac delta distribution.

Remark 1 Computationally, having a windowed signal introduces discontinuities in the first derivatives
which are not only problematic in the numerical simulations (producing spurious oscillations), but are also
essentially non-physical. Therefore in our implementation we actually multiply the sine function by an expo-
nential function (see [3] for details) rather than the traditional indicator function. However, for notational
consistency we will continue to denote this function as I[0,tf ](t).

The electric flux density inside the material, given by D = ε0ε∞E +P , is dependent on the polarization,
P . Note that ε0 is the permittivity of free space and ε∞ is the relative permittivity in the limit of high
frequencies. For computational testing we assume for this presentation that the media is Debye and thus we
use the following polarization model inside Ω:

τṖ + P = ε0(εs − ε∞)E,

where εs is a static relative permittivity and τ is a relaxation time. We also assume P (0, z) = 0. Note that
in the vacuum outside of Ω, P = 0.

3



In order to represent D in the entire domain, we use the indicator function IΩ which is 1 inside Ω and
zero otherwise. Thus

D = ε0E + ε0(ε∞ − 1)IΩE + IΩP.

In order to have a finite computational domain, we impose absorbing boundary conditions at z = 0 and
z = 1, which are modeled as

[

Ė − cE′
]

z=0
= 0

[

Ė + cE′
]

z=1
= 0.

With these boundary conditions, any boundary incident signal passes out of the computational domain, and
does not return, i.e., we force it to be absorbed by the boundary. Also we assume zero initial conditions, i.e.,

E(0, z) = 0

Ė(0, z) = 0.
(2)

Thus our entire system can be written

µ0ε0(1 + (ε∞ − 1)IΩ)Ë + µ0IΩP̈ + µ0σIΩĖ − E′′ = −µ0J̇s in Ω ∪ Ω0

τṖ + P = ε0(εs − ε∞)E in Ω

[Ė − cE′]z=0 = 0

[Ė + cE′]z=1 = 0

(3)

with (2) and
Js(t, z) = δ(z)sin(ωt)I[0,tf ](t). (4)

Classical solutions to (3) should not be expected due to the windowed interrogating signal and the
discontinuous dielectric parameters across interfaces. For this reason, and also to enable the application
of the Finite Element Method, we prefer to convert (3) to weak form using spaces H = L2(0, 1) and
V = H1(0, 1). Substituting εr = (1 + (ε∞ − 1)IΩ) and εd = εs − ε∞ results in the following weak system

〈µ0ε0εrË, φ〉+ 〈µ0IΩP̈ , φ〉+ 〈µ0σIΩĖ, φ〉+ 〈E′, φ′〉 − 1

c
Ė(t, 1)φ(1) +

1

c
Ė(t, 0)φ(0) = −〈µ0J̇s, φ〉

〈τṖ , φ〉Ω + 〈P, φ〉Ω = 〈ε0εdE, φ〉Ω
(5)

with (2) and (4). Note that 〈·, ·〉 is modified from the traditional L2 inner product due to the aforementioned
use of the “method of mappings” (see [2]). Existence and uniqueness of systems of this type are treated in
[2].

In this formulation we have initially assumed a single slab of a dielectric contained in Ω = [z1, z4].
Thus IΩ = 1 if z1 < z < z4, and zero otherwise. We now introduce a gap consisting of a vacuum in
the interior of the material as depicted in Figure 3. If the gap is located in (z2, z3) then we redefine
Ω = {z|z1 ≤ z ≤ z2 or z3 ≤ z ≤ z4}. We will refer to this formulation as Problem 1 (recall Figure 1).
Note that it is not necessary to enforce additional conditions at the interfaces as they are natural interface
conditions and are implied within the weak form of the system. Later we will discuss a second problem
formulation, Problem 2, where the gap is between the dielectric slab and a metallic (supra-conducting)
backing, as shown in Figure 4. This will require slightly different boundary conditions (reflecting instead
of absorbing at z = 1, where the metal backing begins), but otherwise the numerical solution methods and
analysis are the same.

3 Numerical Solution

3.1 Finite Elements

We apply a Finite Element method using standard linear one dimensional basis elements to discretize the
model in space. Let N be the number of intervals in the discretization of z, and h = 1/N , then the Finite
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Figure 3: The domain of the material slab with an interior gap between z2 and z3: Ω = {z|z1 ≤ z ≤
z2 or z3 ≤ z ≤ z4} .
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Figure 4: Problem 2: Dielectric slab and metallic backing with a gap between. Possible sensors only in front.

Element discretization has an order of accuracy of O(h2). For implementation we scale time by t̃ = ct and
the polarization by P̃ = P/ε0 for convenience. The resulting system of ordinary differential equations after
the spatial discretization is the semi-discrete form

εrMë+MΩp̈+ (η0σM
Ω +D +B)ė+Ke = η0J (6a)

MΩṗ+ λMΩp = εdλM
Ωe, (6b)
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where λ = 1
cτ
, and η0 =

√

µ0/ε0. Also e and p are vectors representing the approximate values of E and P ,
respectively, at the nodes z̃i = ih. The mass matrix M has entries

Mij = 〈φi, φj〉 :=

∫ 1

0

φiφjdz,

where {φi}Ni=1 are the basis functions (MΩ is the mass matrix integrated only over Ω), while the stability
matrix K has entries

Kij = 〈φ′i, φ′j〉 :=

∫ 1

0

φ′iφ
′
jdz.

The matrices D and B result from the boundary conditions where

D1,1 = 1

BN+1,N+1 = 1

and all other entries are zero. Finally, J is defined as

Ji = −〈φi, J̇s〉 := −
∫ 1

0

J̇sφidz.

Note that by differentiating (6b) we can substitute into (6a) and obtain an equation only dependent
explicitly on P (two substitutions are required to eliminate P̈ and Ṗ ):

εrMë+ (η0σM
Ω +D +B + εdλM

Ω)ė+ (K − εdλ
2MΩ)e+ λ2MΩp = η0J.

Using shorthand we can write our entire coupled system as

M1ë+M2ė+M3e+ λ2p̄ = η0J (7a)

˙̄p+ λp̄ = εdλM
Ωe, (7b)

where p̄ = MΩp. It is important to mention that each matrix is tridiagonal due to the choice of the linear
finite elements.

3.2 Finite Differences

In order to solve the semi-discrete form of our equations we consider two distinct finite difference methods.
In the first method we convert the coupled second order system of equations into one larger first order system
and simply apply a theta method (unless otherwise stated, we use θ = 1

2 ). In the second method we solve
first for the polarization with a forward differencing scheme using the initial conditions and then use that
to update a second order central difference scheme for the magnitude of the electromagnetic field. We then
continue this process iteratively, alternating between solving for P and for E.

Both methods are second order in time and space for appropriately smooth data (and with ∆t = O(h)).
We have compared the errors and the run times of the two methods for several smooth test problems and
have determined that the second method is as accurate, but twice as fast, as the first in all cases primarily
due to the fact that the linear system is of smaller dimension in the second method. Also, the first method
incidentally solves for ė in addition to e and p, which is superfluous.

In our second method we use a second order central difference scheme to solve (7a). Thus we must first
find an approximation to E(t1, z) where ti = i∆t. Note that approximating E with its Taylor expansion
around t0 = 0 and applying the initial conditions and ODE, one obtains

E(t1, z) ≈ −
∆t2

2
µ0J̇s(0, z).

Our approach is to first solve for p̄ using a θ-method, and then use that approximation to solve for e at
the next time step. Thus, our finite difference approximation for (7b) is

p̄n+1 = p̄n +
λ∆t

1 + λ∆tθ
(εdM

Ωen+θ − p̄n) (8)
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where [en]j = E(tn, z̃j), [p̄n]j = MΩP (tn, z̃j), z̃j = jh, and en+θ = θen + (1− θ)en+1 is a weighted average
of en and en+1 for relaxation to improve the stability of the method. Once we have p̄n+1 we can solve for
en+2. Applying a second order central difference method with averaging to (7a) gives

A1en+2 = A2en+1 +A3en +∆t2η0Jn+1 − λ2∆t2p̄n+1. (9)

Note that in this case A1 is tridiagonal and the matrix is the same for each time step, so we may store the
Crout LU factorization and use back substitution to solve the system at each time step. For tridiagonal
matrices the factorization and the back substitution are both order O(N). See [3] for computational issues
encountered in implementation, including the use of the method of maps to allow for gap sizes (δ) smaller
than the mesh size (h).

3.3 Numerical Simulations

The following figure depicts the numerical solution of the amplitude of the electric field at various times
(Figure 5). We considered a Debye medium with the following parameters:

εs = 78.2,

ε∞ = 5.5,

σ = 1× 10−5,

τ = 3.16× 10−8,

f = 2GHz,

and a material gap located at [z3, z4] = [.6, .61].
We have used 2 GHz simply so that our computational domain of z ∈ [0, 1] would not have to be scaled

for this demonstration. Also, in practice, one would not compute a domain so much larger than the material,
just as in an experiment the sensors should be as close to the material as possible to reduce noise. We did so
here merely so that the full wavelength of the signal would be visible. See [3] for figures showing the signal
recorded at receivers located at z = 0 and z = 1.

4 Problem 1

We now apply an optimization routine to the least squares error between a simulated signal and the given
data to try to determine the gap characteristics. In particular we will be trying to find the depth, d := z2−z1,
and the width, δ := z3 − z2, which will produce a simulated signal most closely similar (in the least squares
sense) to the data. Existence and continuous dependence of inverse problems of this type are addressed in
[2].

4.1 Inverse Problem

All of the following are solved with respect to a reference problem (R1) with these parameter values (see
also Figure 3):

z0 = 0, z1 = .2, z2 = .3, z3 = .5, z4 = .8, z5 = 1.0

f = 4 GHz, tf is one period

τ = 8.1× 10−12, σ = 1× 10−5, εs = 80.1, ε∞ = 5.5 in the material

N = 1024, Nt = 12926

The sample rate for the data is one sample per sr = .05ns

The corresponding values of (d, δ) are (.1, .2). With this choice of parameters, the forward solve solution
at z = 0 clearly shows distinct reflections from the z1, z2, and z3 interfaces. This clear distinction will aid
in our approximating the initial guesses, thus making this a relatively easy sample problem.

7
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Figure 5: Computed solutions at different times of a windowed electromagnetic pulse incident on a Debye
medium with a gap.

4.1.1 Initial Guesses

Assuming the physical parameters are given (either known or from a previous estimation), we want to
determine the depth of any gap (d), and the width of that gap (δ), using reflection and/or transmission
signals. First we attempt to get very close approximations to d and δ using information about the travel
times of the data signal, then we use these values as initial guesses in the optimization routine. See [3] for a
complete discussion of the methods used in determining initial estimates.

4.1.2 Optimization of Least Squares Error

With initial estimates to d and δ established, we define our inverse problem to be: find q = {d, δ} ∈ Qad

such that the following least squares error between the simulation and the observed data is minimized:

J(q) =
1

2MS

M
∑

j=1

S
∑

i=1

(E(ti, z
O
j ; q)− Êij)

2. (10)

Here the Êij are measurements of the electric field taken atM specific locations (e.g., zO1 = 0 and/or zO2 = 1)
and S distinct times (e.g., every sr = 0.06ns). The E(ti, z

O
j ; q) are solutions of the simulations evaluated at

8



the same locations and times corresponding to the data, Êij , and using parameter values q. The set Qad is
the feasible set of q values determined such that d and δ are realistic (e.g. positive).

We apply an inexact Gauss-Newton iterative method to the optimization problem. That is, we re-write
the objective function as

J(q) =
1

2MS
RTR

where Rk = (E(ti, z
O
j ; q)− Êij) for k = i+ (j − 1)M is the residual. To update our approximation to q we

make the Inexact Newton update step q+ = qc + sc where

sc = −
(

R′(qc)
TR′(qc)

)−1∇J(qc)
= −

(

R′(qc)
TR′(qc)

)−1
R′(qc)

TR(qc)

is the step, qc is the current approximation, and q+ is the resulting approximation. This is an inexact method
because we have disregarded the S Hessians of (E(ti, z

O
j ; q) − Êi), which is generally acceptable for small

residual problems [7].
In this simple case we have a 2×2 matrix inverse, so we can compute it explicitly. Each iteration requires

one function evaluation and a forward difference gradient, which is two additional function evaluations (since
we have two parameters). Each function evaluation is equivalent to a simulation. Therefore we want as few
iterations as possible.

4.1.3 Convergence

Initial testing (with z = 0 data only) shows convergence to 8 decimal places of each parameter in 6 iterations
of Gauss-Newton with initial guesses having at most 5% relative error in δ and 2% in d. The algorithm does
not converge to the correct solution if the initial guess for d has 5% relative error or if the initial guess for δ
has 10% relative error.

One reason that the algorithm fails to converge is that this objective function is poorly behaved. In
Figure 6 we show a plot of the objective function with respect to δ. The two very large peaks in J on

0.14 0.16 0.18 0.2 0.22 0.24 0.26
0

5

10
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z2e = 0.3,iJ = 1, N=1024, Nt=15361, Ns=215, MinJ(R) = 0 @ delta = 0.2

Figure 6: Nonlinear Least Squares objective function versus δ for a small range of δ values (data at z = 0
only)
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either side of the exact minimizer are due to the simulated solution going in and out of phase with the exact
solution. For this example, the simulated solution is most out of phase with the exact solution at δ = .181
and δ = .219 (i.e., approximately δ∗ ± λ

4 ), which correspond to the first and second peak in J respectively.
The same phenomenon occurs in the d direction, for the same reasons. See [3] for a thorough demonstration
of this behavior.

Very few optimization routines can provide convergence without initial conditions between the two peaks
in J . The effective convergence region for this objective function applied to this problem (with or without
observations at z = 1) is within about 8% of the actual value of δ when d is exact and within about 7.5% of
the actual value of d when δ is exact.

Note also that the convergence region is very dependent on the frequency of the interrogating signal; for
higher frequencies, the region is even smaller. This is because the distance between the two peaks in J is
linearly dependent on λ, the wave length of the interrogating signal. This has profound implications for our
desire to interrogate with signals in the Terahertz range. There are also peaks in J with respect to d as well,
for the same reasons.

Further, this is considering only a one parameter minimization problem with the other parameter held
fixed at the exact solution. Convergence is much worse for the actual two parameter problem. In fact, in
the full surface plot of J , a diagonal “trench” occurs approximately along the line

d = − 1

2.3
(δ − δ∗) + d∗ (11)

(where ∗ denotes the exact solution). This phenomena is further explained, and depicted in various figures,
in [3].

4.2 An Improved Objective Function

As demonstrated above, the usual Nonlinear Least Squares objective function when plotted with respect to
either d or δ has two large peaks in J on either side of the exact minimizer. The reason for these peaks in
J is that the simulated solution goes in and out of phase with the data as d or δ change. When they are
precisely out of phase, there is a very large absolute error, which when squared, causes the objective function
to have large peaks. Therefore, one solution is to not consider the absolute error, but instead the error of
the absolute values, i.e., the following objective function:

J2(q) =
1

2MS

M
∑

j=1

S
∑

i=1

(

|E(ti, z
O
j ; q)| − |Êij |

)2

. (12)

This non-standard mechanism will prevent the fact that the signals go in and out of phase with each other
from having an impact on the objective function, since positive magnitudes cannot cancel each other out.
Therefore it gives a more accurate measure of the difference between two signals. Note that the orientation
of the interrogating signal (e.g., peak first) precludes the possibility of a solution E from having the same
magnitude but opposite sign as Ê. Futher, note that J2(q) is not differentiable on a set of measure zero; this
is very unlikely to affect the finite difference computations of the gradients, and did not present problems in
our numerical testing. We plot J2(q) versus δ in Figure 7. See [3] for other plots including surface plots as
J2 varies over d and δ.

Note that while we have effectively eliminated the peaks on either side of the exact solutions, in essence
we have merely converted them to local minima! But, since the minima occur for the same reasons the
peaks in J had been occurring, they occur at the same values of δ. Note that we can see from plotting the
signals that they were exactly out of phase when they were shifted by λ

4 , where λ is the wavelength of the

interrogating signal. Therefore δ is off by λ
4 . Since we determine the frequency of the interrogating signal,

this is a known quantity, and we can predict where these local minima will occur a priori!
Most optimization routines will continue until they find a local minimum, and since the two false minima

described above are at least close to “predictable” locations, we can easily test on either side of any detected
minimum to determine if it is in fact global. If J2 is less at a fixed distance in the δ direction (e.g., λ

4 ) on
either side of a detected minimum, i.e., at either test location of the local minimum, we restart Gauss-Newton
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Figure 7: Our modified Nonlinear Least Squares objective function (J2) versus δ for a small range of δ values.
The dotted lines represent the delta values that will be tested if a local minimum is found

at the new best guess. Thus if either of the two local minima described above is found, we will eventually
have global convergence if one of their test locations are sufficiently close to the global minimizer.

To graphically demonstrate this approach, we have added dotted and dash-dotted lines to the the graph
of J2(δ) in Figure 7 to represent the test values of the first and second local minima respectively. One can
clearly see that if either local minimum is detected, the test value either to its right if it is the first one, or
to its left if it is the second, will give a smaller J2 and should eventually lead to the global minimizer being
detected. Using this method we have in principle increased our convergence region to about 25% of δ when
d is exact. The same approach works for the d direction, increasing its convergence region from about 7.5%
to about 15% when δ is exact.

Other possible modifications to the Least Squares objective function having similar effects include squar-
ing the signal instead of taking the absolute value (thus preserving smoothness everywhere), or just halving
the reference signal so that we only have a positive amplitude to begin with. Each of these options will still
have the local minima problems described above, as well as their own unique disadvantages.

4.3 Testing J2

In order to determine the limitations of an optimization routine to minimize our objective function J2 in
a more practical setting we examine J2 versus q when error is present. In particular we try both adding
random noise to the data signal, as well as testing bad initial guesses for δ and d. It should be noted that
in the tests reported on below we assume that data at z = 1 is not available and used only observations at
z = 0.

4.3.1 Sensitivity to Initial Guesses

For J2 described in (12), the objective function is more sensitive to d than to δ, therefore it is imperative
that our initial guess for d is as good as possible. To give an idea of what may happen if our d estimate
were not within the 15% our testing has determined is necessary, we examined plots of the objective function
versus δ for three values of d, which are 3%, 15%, and 30% off respectively (these are displayed in [3]).
With errors greater than 15% an erroneous global minimum appears for small δ values. This occurs because
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the first reflection of the data is not matched by the simulation, but the second reflection matches it if δ
is small enough (see [3] for details and sample plots). It turns out that the distance between the erroneous
global minimum and the correct minimum is exactly δ∗ = 0.2, which is what would be expected. However,
we cannot apply the same idea as before where we add or subtract a fixed amount to test for other local
minima, since for one, the “more optimal” of the two is farther from the “true” solution, and also, we would
have to know δ in order to add or subtract it (but δ is what we are trying to estimate!).

4.3.2 Random Observation Noise

In order to test the feasibility of this procedure as an estimation method, we have produced synthetic data
for our observations Êi. In an actual experiment, one must assume that the measurements are not exact. To
simulate this we have added random noise to the original signal. The absolute value of the noise is relative
to the size of the signal. If Ei is the data sampled, then we define Êi = Ei(1+νηi), where ηi are independent
normally distributed random variables with mean zero and variance one. The coefficient ν determines the
relative magnitude of the noise as a percentage of the magnitude of Ei, in particular, ν = 0.05 corresponds
to 10% noise and ν = 0.025 to 5% noise.

Plots of the resulting objective functions for various values of ν ranging from 2% to 40% are shown in
[3]. Summarizing these results, we note that the structure of the curves is not significantly affected, nor
is the location of the global minimum. However the magnitude of the minimum of the objective function
is increased, making Inexact Newton methods slightly less reliable due to the larger residual. Still, our
results show that the correct minima were consistently found and within a reasonable amount of time.
Select examples are summarized in Table 1. Corresponding intial estimates ranged from, in the ν = 0 case,
(d0, δ0) = (0.093689, 0.20986) to, in the ν = .2 case, (d0, δ0) = (0.109668, 0.172385).

ν d δ J Iterations CPU Time (s)
0 0.1 0.2 1.32319E-10 7 160
0.01 0.099994 0.199969 0.00792792 8 186
0.05 0.099974 0.199835 0.199489 13 291
0.2 0.099928 0.199204 3.04619 20 435

Table 1: Number of Iterations and CPU Time for Gauss-Newton given various relative magnitudes of random
error

5 Problem 2

We next apply the most useful techniques obtained from investigations of Problem 1 to a new formulation
of the interrogation problem. In Problem 2 we consider a dielectric slab and a metallic backing (conductor)
with a possible gap between the two (see Figures 4 and 8). Applications of this specific formulation included
detecting delamination of insulation from metallic containers, e.g., insulating foam on a space shuttle fuel
tank. In order for this numerical approach to be useful in this particular application we must be able to
resolve a gap of width .2mm inside of a slab with a thickness of at least 20cm using a frequency of 100GHz.

We will again assume the same physical parameters for our dielectric and consider the gap as a vacuum.
The variables d and δ are still the depth and the width of the gap respectively. One major difference is that
in this problem we are only able to detect the electromagnetic signal in front of the material. Also, since the
metallic backing reflects much of the signal, we have considerably more overlapping of the reflections to worry
about. These properties contribute to the fact that this formulation leads to a much more difficult inverse
problem. For this reason we will be using more sophisticated optimization routines including a Levenberg-
Marquardt parameter and Implicit Filtering. We will also need to develop different approximation methods
for our initial guesses.

The implementation of this problem has several minor differences from the previous one. First, we now
only need to represent two interfaces z̃1 and z̃2, with z̃0 and z̃3 being the front and back computational
boundaries, respectively. Thus now we define the depth of the gap as d := z̃2 − z̃1 and the width as
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δ := z̃3 − z̃2. Also, as previously mentioned, the conductive metal backing reflects the signal, and hence we
must change our absorbing boundary conditions at z = 1 (for a finite computational domain), to an actual
fixed, Dirichlet boundary condition (E = 0). We must modify our finite element matrices accordingly, as
well. Otherwise, the numerical method for simulation is the same as it was for Problem 1, namely standard
finite element methods for spatial derivatives, and an alternating implicit/explicit centered difference time
stepping scheme. Sample solutions are plotted in Figure 9.

0 0.005 0.01 0.015 0.02
z (meters)

Ω 

z
0
 z

1
 z

2
 z

3
 

Figure 8: The domain of the material slab with a gap between the medium and a metallic conductive backing:
Ω = {z|z1 ≤ z ≤ z2} .

We again define our inverse problem to be: find q := {d, δ} ∈ Qad such that an objective function
representing the error between the simulation and the observed data is minimized:

min
q∈Qad

J(q).

Here the measurements of the electric field, Êi, are taken only at z = 0, but still at S distinct times (e.g.,
every 0.06ps). The solutions of the simulations, E(ti, 0; q), are evaluated at the same location and times
corresponding to the given data, and using parameter values q. In lieu of actual data from experiments, we
again create our observed data by using the simulator, however, the only information that is given to the
minimizer is the data observed at z = 0, which we will denote by Ê.

The system that we use to model the propagation of the electric field, and thus simulate in order to solve
our inverse problem, is as follows, and includes the above mentioned Dirichlet condition at z = 1:

µ0ε0(1 + (ε∞ − 1)IΩ)Ë + µ0IΩP̈ + µ0σĖ − E′′ = −µ0J̇s in Ω ∪ Ω0

τṖ + P = τε0(εs − ε∞)E in Ω

[Ė − cE′]z=0 = 0

[E]z=1 = 0

E(0, z) = 0

Ė(0, z) = 0

with
Js(t, z) = δ(z)sin(ωt)I[0,tf ](t).

See Section 2 for a complete description.
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Figure 9: Computed solutions at different times of a windowed electromagnetic pulse incident on a Debye
medium with a gap between the medium and a metallic conductive backing. The width of the slab is
d = .02m and the width of the gap is δ = .0002 (barely visible at the far right of the gray region).

5.1 Objective Function

As in the previous problem, we encounter difficulties when attempting to use the standard Least Squares
objective function to compute the error between the simulated signal and the observed data. The constructive
interference of peaks and troughs produces peaks in J in the objective function on all sides of the global
minimum which make it nearly impossible to find the solution in the middle. The peaks in J are clearly
apparent in Figure 10. In contrast, Figure 11 shows a surface plot of our modified least squares objective
function

J2(q) =
1

2S

S
∑

i=1

∣

∣

∣
|E(ti, 0; q)| − |Êi|

∣

∣

∣

2

.

It is clear, as before, that the initial guess is crucial to the success of any optimization routine. Notice
that although J2 does not exhibit the familiar peaks in J of J1, it does however still have many local minima,
which are just as difficult to avoid in a minimization routine.

The local minima in J2 for this problem occur approximately every λ
4 along the line

d = − 1√
ε∞

δ + b.
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This happens for the same reason as in Problem 1 (see [3] for details and illustrations). Because we cannot
eliminate these local minima, we must appeal to the procedure that worked in the previous problem, namely
testing “check points”. Since we know where these local minima are occurring with respect to the global
minimum, if our minimization routine finds what it suspects to be a local minima, say (d1, δ1), we simply
check (d1 ±αλ

4 , δ1 ∓α
√
ε∞

λ
4 ), where α = 1/

√
1 + ε∞. If we find a lower objective function value, we restart

our optimization routine at that “check point”.
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Figure 10: Close up surface plot of Least Squares objective function demonstrating peaks in J , and exhibiting
many local minima.

5.2 Initial Guesses

In spite of our faith in the “check point” method, we still desire to find the best initial guesses for our
optimization routine as possible so that we may hopefully find the global minimum without restarting. As
before, we use the travel time of the first trough to approximate the location of the first interface. However,
in this formulation we can take advantage of some of the characteristics of the signals. For example, the
first reflection off of the gap is always trough-first, and the second (as well as each subsequent reflection)
is always peak-first. For this reason, if we want to locate the first trough we can simply find the largest
peak (belonging to the second reflection) and back track. It is a very simple matter to find a maximum or
minimum of a vector of values. After the location of the largest peak is found, we back track to find the
minimum in front of it, namely that belonging to the first reflection off of the gap. Then using the procedure
described in Section 4.1, we approximate the root immediately in front of this trough. That gives us the
travel time for the first reflection off of the gap, which in turn gives us the depth d of the gap.

Finding δ is, unfortunately, not nearly as straightforward. There are two main possibilities, and therefore,
two differing approaches to approximating δ, depending on the nature of the reflected signal. We consider
the two cases:

(i) The leading trough of the first reflection and the second reflection are disjoint (i.e., δ > λ
8 ). In this

case we can find the locations of the peak and trough and use the travel time between the two to
approximate δ. We denote this approximation by δ1. (Note that the observed peak is not necessarily
the same as the original peak unless δ > 3λ

8 , but it is still a good approximation). See Figure 12.
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Figure 11: Close up surface plot of modified Least Squares objective function demonstrating lack of peaks
in J , but exhibiting many local minima.

(ii) The second reflection partially truncates the trough of the first (i.e., δ < λ
8 ). As a rough approximation,

we can assume that the location of the actual minimum (trough) is where the two signals begin to
interfere with each other (the observable minimum). See Figure 13. We denote this approximation by
δ4.

A more accurate method is to use triangles to approximate the two reflections. By knowing the
location of the maximum and minimum (peak and trough, respectively), and also the beginning of
the first signal (from Section 4.1) and the rough approximation to the beginning of the second signal
using δ4, we can estimate the slopes of the two triangles with finite differences. Also note that since
the two signals are added, the observed root between the peak and trough in the combined signal is
actually an equilibrium point between the two signals. By setting equal to each other the two linear
approximations for each of the two signals, evaluated at the equilibrium point, we can solve for the
distance between the starting point of each signal, and thus for δ3. See Figure 14. Specifically, let
(p1, q1) be the location of the trough of the combined signal and (p2, q2) be the location of the peak.
Let r1 be the location of the root in front of the trough, and r2 be the root between the trough and
peak. Estimate the slope of the first signal, m1 < 0, using (p1, q1) and r1. Now if we let y = r2 − r1
and say x is the actual distance between r1 and the beginning of the second signal, then setting the
linear approximations equal in magnitude, but opposite in sign, at r2 yields

−m1y = m2(y − x).

Now we can estimate the slope of the second signal, m2 > 0, using (p2, q2) and (r2,−m1y). Also, we
can re-write the above equation as

x =

(−m1 +m2

m2

)

y.

To find δ3 we simply divide x by 2 and the (scaled) speed of light in the material, i.e.,
√
ε∞.

Since each of the two situations above is dependent on the parameter it is approximating, we must also
determine which of the above methods is most appropriate to use. Thus we use the most precise of the
available methods to determine the situation, i.e., δ4, instead of δ3 since in general δ3 underestimates δ so we

16



0 2 4 6 8 10 12 14
−40

−20

0

20

40

t (ns)

E

0 2 4 6 8 10 12 14
−40

−20

0

20

40

t (ns)

E

Figure 12: The top plot represents several signals which may be observed in a simulation of Problem 2. The
bottom plot shows the sum of the top signals. The peak of the second signal is just beginning to be obscured
by the first when δ becomes less than 3λ

8 . Thus the observable maximum is still a good approximation of
the peak of the second signal, and a trough to peak distance can be used to estimate δ.

do not want to use it as a criterion for determining whether δ is small. (Note that when δ is indeed small,
δ3 is more accurate than δ4.) The estimate for δ4 tends to be an overestimate, and is only valid if δ < λ

8 .
Unfortunately, δ1 also tends to be an overestimate, so we prefer to only trust it entirely if it is larger than
λ
4 . If neither δ1 nor δ3 is a sufficient approximation we choose to use the average of the two, and call it δ2.

Therefore our algorithm for approximating δ is as follows:

(a) If δ4 <
λ
8 then use δ3

(b) else if δ1 >
λ
4 then use δ1

(c) else use δ2 (average between δ1 and δ3).

We tested our approximating methods on exact depth (d) values of: .02, .04, .08, .1, and .2 m, and
values of width (δ): .0001, .0002, .0004, .0006, and .0008 m. Since λ

8 is the transition point between the
two situations, it is understandable why δ close to this value is the most difficult to accurately resolve. We
chose this range of δ’s because our choice of frequency gives λ

8 = 3.7475 × 10−4m. See the tables in [3] for
the initial estimates of d and δ.

The approximations improve slightly as the number of finite elements is increased, and appeared to
converge to fixed values. This suggests that numerical error (and instability) can affect the estimates. For
each case there is a significant amount of visible numerical error in the simulations below a certain number
of elements, therefore in approximating δ we chose to use the number of elements just above the threshold.

While the initial estimates were relatively inaccurate, some δ approximations being almost 100% off from
the true solution value, in the numerical tests we performed, all the initial estimates were sufficiently close
to the true, global minima as to not cause the optimization routine to result in a false, local minima. While
our “check point” method is available if needed, it is much more efficient to have an accurate initial estimate
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Figure 13: The top plot represents several signals which may be observed in a simulation of Problem 2. The
bottom plot shows the sum of the top signals. The trough of the first signal is partially truncated by the
second signal. In this case the observed minimum is a still a good approximation to where the second signal
begins. For smaller δ, a linear approximation must be used.

than to restart after optimizing from a bad one. Still, the report [3] describes several very real examples
where the “check point” method would be a necessary last resort.

5.3 Optimization Method

Now that we have approximated our initial guesses, we need to minimize the objective function in order to
solve the inverse problem. In Problem 1, Gauss-Newton was sufficient to find the global minimum for most
cases. In this formulation, however, we will apply more sophisticated methods, reverting to Gauss-Newton
whenever possible since its convergence rate is best.

The first modification we make to Gauss-Newton is to add a Levenberg-Marquardt parameter, νc (see
[7]). The Inexact Newton step becomes

sc = −
(

R′(qc)
TR′(qc) + νcI

)−1
R′(qc)

TR(qc).

The parameter adds regularization by making the model Hessian positive definite. The method uses a
quadratic model Hessian, and also has a built-in line search with a sufficient decrease condition. The line
search is based on the predicted decrease computed from the quadratic model. If the actual improvement
of the objective function, J , is close to the amount predicted by the model Hessian after a step is taken,
then the method decreases the Levenberg-Marquardt parameter, νc, effectively increasing the relative size
of the next step, which hopefully accelerates the convergence. As νc is decreased to 0 the method becomes
Damped Gauss-Newton (meaning Gauss-Newton with a line search). If, however, the actual improvement
of J after a step is not sufficient (or is even negative), νc is increased, effectively scaling back the Newton
step, and we retest. If there are too many reductions then we declare a “line search failure” meaning that
too small a step is required to decrease the objective function.
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Usually a method would exit after a line search failure, returning the best approximation so far. But
we use this failure to call an adaptive mesh size routine, i.e., an Implicit Filtering technique. The idea is
that the failure is likely due to the fact that the direction the finite difference gradient chose is probably
not an actual “descent direction” in the global sense. In other words, the finite differencing is most likely
differentiating noise. In the same manner that a smooth surface may look rough under a microscope, using
too small of a differencing step amplifies effects from round-off error and other sources of numerical noise.
Our technique is to increase the relative differencing step, ĥ, recompute the gradients, and then try the
Levenberg-Marquardt method again. The relative differencing step, ĥ, is such that the gradient, ∇

ĥ
, of

J(q) = J([d, δ]) is computed with

∇
ĥ
J([d, δ]) =









J((1+ĥ)d,δ)−J(d,δ)

ĥd

J(d,(1+ĥ)δ)−J(d,δ)

ĥδ









We apply a similar approach to modifying the differencing step ĥ as we do for changing νc in that after a
successful step we decrease ĥ, but if we have another failure we increase ĥ even more. Since the convergence
rates of gradient based methods are dependent on the size of ĥ (for example Gauss-Newton is O(ĥ2)), we

want ĥ to be as small as possible and still be effective, similarly with νc. We use a three tiered approach
to changing ĥ. Initially we set ĥ = 10−9. To increase ĥ we raise it to the 2

3 power, to decrease we raise it
to the 3

2 power. Additionally we define 10−4 to be the maximum allowable differencing step value. Thus

ĥ ∈ {10−9, 10−6, 10−4}.
In general an optimization method exits with “success” if the norm of the current gradient is less than

tol times the norm of the initial gradient. However, in our method we do not immediately trust the finite
difference gradients, and instead call Implicit Filtering again when the gradients appear small. When we
have verified small gradients on all three scales (the various values of the differencing step ĥ defined above),
then we exit with “success”.
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Remark 2 In practice, a very good solution is found within a couple of Levenberg-Marquardt steps, and
then an equal number of Implicit Filtering iterations verify, and sometimes enhance, this solution. In the
interest of efficiency, and since this is a parameter identification problem, we exit early with “success” if our
objective function is satisfactorily small (i.e., tol times the initial value), which can save on average about
half of the possible iterations.

Additionally we impose a restriction on the number of “pullbacks” on each linesearch, and on the number
of iterations, effectively limiting the total number of function calls. If a small gradient has not been verified
on all scales before exhausting the maximum number of iterations, we exit with “failure”.

5.4 Numerical Issues

For small N the difficult cases are those with large depth. This is because the computational domain is
effectively increased when the depth is increased, making the mesh sizes larger and increasing the level of
numerical error. The magnitude of δ does not seem to have a significant effect on the convergence of the
method.

An obvious disadvantage to having a large N is that each simulation takes much longer. In general the
total execution time is quadrupled when the number of elements is doubled. This is consistent with the
fact that complexity of the most time consuming part of the simulation, the linear solves, is O(N), and the
number of time steps Nt is also O(N). So when we double the number of finite elements we are also doubling
the number of time steps. Therefore, we get an overall complexity of O(N 2). Thus, as mentioned before, in
our inverse problem we choose to use the number of elements just above the threshold of when numerical
error is apparent.

We should also mention that in order to create data, in lieu of actual experimental data, we perform a
simulation at a higher resolution believing it to be more accurate. Specifically, we double the number of
finite elements. Since the time step, and therefore the effective sample rate if the time step is too large, are
both dependent upon the mesh size (refer to [3]), the sample times of the simulated data do not necessarily
correspond with the sample times of the simulations at the lower resolution. (In general we have twice
as many samples from the higher resolution.) Thus in order to compute the modified least squares error
between the two vectors, we perform a linear interpolation of the simulated data onto the sample times at
the lower resolution. See Figure 15. Note that in the usual case where we simply have twice as many sample
points from the higher resolution simulation, we are in effect discarding sample points rather than doing a
true interpolation.

For comparison we compute the low resolution simulation using the values d∗ and δ∗ (note that this is
not the same as taking the high resolution simulation and interpolating it onto the low resolution time steps,
which we actually use as our observed data). In every case that we have tested, J , when computed with
the d and δ values found from the optimization routine (dmin and δmin), is less than or equal to J when
computed with the original values (d∗ and δ∗). This suggests that an actual global minimum of the objective
function has been found, even though the final estimates of d and δ themselves are not necessarily equal
to d∗ and δ∗. Note in Figure 15 that the simulation using original values, (d∗, δ∗), is in fact closer to the
original data, but the simulation using the minimizer values, (dmin, δmin), is closer to the interpolated data
(see for example the [.335, .3352] interval).

Although we could compute our optimization routine at the same resolution as the simulated data to
get a better fit in our tests, this would not properly represent the real-life phenomenon of sampling data.
Sampled data is inherently not a completely accurate representation of a physical observation. We believe
that our interpolation approach gives a more realistic expectation of how our method would perform given
actual experimental data. In order to further test the robustness of our inverse problem solution method we
introduce random noise to the detected data in Section 5.5.

5.5 Numerical Results

Tables 2 and 3 show the final computed approximations for the depth of the slab (dmin) and the width of
the gap behind it (δmin). The relative differences from the original values used to generate the data (d∗ and
δ∗), are: for depth, on the order of .0001 and for δ, on the order of .01. However, this does not imply that
the optimization routine was unable to find the optimal solution. Recall that since our data is generated
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Figure 15: Plotted are the actual simulated data (N = 2048), the interpolation of the simulated data onto
the low resolution sample times (N = 1024), the result of the minimization routine (N = 1024), and a low
resolution (N = 1024) simulation using the exact values of d and δ.

with essentially a different simulator than our forward solves, the original values do not necessarily minimize
the objective function. The objective function values give a better indicator of how well the optimization
routine works since it shows the fit to the generated data. Table 4 shows the final objective function values.
In each of these cases, the final objective function value (Jmin) was less than J

∗ := J(q∗). In fact, the ratios
Jr := Jmin/J

∗ were on average .3008. We consider any Jr < 1 to represent a successful convergence.
Although δ values that are near λ

8 = 3.7475 × 10−4m are the most difficult for which to obtain initial
approximations, we see that the objective function values in these cases are just as small (and the final
estimates are just as close) as for other δ values.

The execution time, in seconds, as well as the number of function calls, are given in [3]. While the above
tables establish that we were actually able to resolve the case of 20cm depth, there was a price we had to pay.
The average execution times for each of different mesh sizes (N = 1024, 2048, 4096, 8192, and 16384) were
39, 248, 1452, 6229, and 35509 seconds, respectively. Each represents an increase in time over the previous
mesh size by a factor of 6.4, 5.9, 4.28, and 5.7, respectively. This is consistent with the fact that the forward
solves are order O(h2). However, the additional sample points for the larger N cases allowed for smaller
initial objective function values which resulted in increasingly more iterations to satisfy the relative tolerance
in our stopping criteria. This explains why we do not see ratios closer to the expected 4 for order O(h2)
methods.

5.5.1 Relative Random Noise

We add random noise to the signal, as mentioned above, in order to more closely simulate the experimental
process in data collection. As in Section 4.3.2, we start with relative noise where the absolute value of the
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δ
d .0001 .0002 .0004 .0006 .0008
.02 (N=1024) 0.0200053 0.0200022 0.0200006 0.0200005 0.0200002
.04 (N=2048) 0.0399948 0.0399974 0.0400005 0.0400005 0.0399999
.08 (N=4096) 0.0799973 0.0799987 0.0800006 0.0800006 0.0800003
.1 (N=8192) 0.0999945 0.0999974 0.1 0.1 0.0999999
.2 (N=16384) 0.200011 0.200005 0.2 0.2 0.200001

Table 2: The final estimates of d.

δ
d .0001 .0002 .0004 .0006 .0008
.02 (N=1024) 9.40622e-05 0.000196754 0.000398642 0.000597275 0.00079707
.04 (N=2048) 0.000106435 0.000203916 0.000394204 0.000592156 0.000793622
.08 (N=4096) 0.000103585 0.000202273 0.000395791 0.000593861 0.000794401
.1 (N=8192) 0.000106593 0.000203876 0.000396203 0.000594976 0.000795985
.2 (N=16384) 8.7456e-05 0.000191808 0.00040297 0.000602902 0.00080129

Table 3: The final estimates of δ.

δ
d .0001 .0002 .0004 .0006 .0008
.02 (N=1024) 0.00786171 0.00906699 0.0115657 0.0233783 0.0447687
.04 (N=2048) 0.021516 0.0343314 0.0514108 0.0700747 0.0927117
.08 (N=4096) 0.0116105 0.0145428 0.0201004 0.0272513 0.0344458
.1 (N=8192) 0.00304723 0.00547532 0.00779186 0.00931778 0.0118529
.2 (N=16384) 0.000609258 0.00133978 0.00146975 0.000962975 0.000766141

Table 4: The objective function value of the final estimates.

noise is proportional to the size of the signal. If Ei is the data sampled, then we define Êi = Ei(1 + νrηi),
where ηi are independent normally distributed random variables with mean zero and variance one. Again,
the coefficient νr determines the relative magnitude of the noise as a percentage of the magnitude of Ei, in
particular, νr = 0.01 corresponds to 2% noise. We tested relative magnitude levels of 2%, 10%, and 20%
(corresponding to νr = .01, .05, and .1 respectively). See [3] for tables of initial estimates. In nearly all
the cases the estimate was close enough for the optimization method to converge (Jr < 1) to the expected
minimum. The only exceptions were with ν = .1 and δ = .0004, which are understandably the most difficult
cases.

The final approximations dmin and δmin in the presence of noise are also given in [3]. Some approximations
with high noise appear to be better approximations than some with little or no noise. For example, with
δ∗ = .0001, d∗ = .04, the νr = .1 final approximations are an order of magnitude closer to the original values
than the νr = 0 final approximations. This is not to say that the noise helps the approximation method.
Rather, it is for the same reason that, for example, as shown in Figure 15, the actual parameter values
produced a signal farther away (in the Least Squares sense) from the generated data than a signal computed
with the approximated parameter values. The resulting objective function values give a better indication of
the accuracy of the approximation to the data. The final objective function values corresponding to νr = 0
were two orders of magnitude smaller on average than those resulting from νr = .1. Thus, it is clear that
the data without noise is more accurately matched by its approximations than those with noise.

5.5.2 Standard Error Analysis

In an actual inverse problem using data collected by experiment, one desires to have confidence intervals
on all parameter estimates. We will apply standard error techniques to an Ordinary Least Squares (OLS)

22



formulation of our problem to obtain confidence intervals on our estimates. In order to rewrite our objective
function in an OLS formulation, we define y(t; q) = |E(t, 0; q)| to be our estimate to ŷ = |Ê|, which is the
data we are trying to fit by determining q = (d, δ). Now it is clear that our objective function can be written
in the standard OLS form

J(q) =
1

Ns

Ns
∑

i=1

|y(ti; q)− ŷi|2 .

For simplicity of terminology, in this section alone, we will refer to |Êi| as the data and to |E(ti, 0; q)| as the
simulations.

With the relative random noise described above we do not have constant variance, as is demonstrated in
Figures 16 and 17. Here we have plotted the residual ri := |E(ti, 0; q̂OLS)| − |Êi| against time, ti, and also
against |E(ti, 0; q̂OLS)|. As one would expect with noise that is relative in size to the signal value, we have
a pattern in Figure 16 that follows the pattern of the original signal. Figure 17 demonstrates the fan shape
associated with noise that is dependent upon the size of the signal, i.e., non constant variance.

Since constant variance is most conveniently assumed in standard error analysis, we further consider
estimates obtained from an inverse problem applied to data with constant variance random noise added. In
particular, the data we now consider is generated by

Êj = E(tj , 0, ; q
∗) + βνrηj

where
ηj ∼ N (0, 1)

and the constant β is a scaling factor chosen simply so that the noise level, νr, will somewhat correspond to
the parameter νr used in the previous section on relative noise. Specifically, β = maxi Êi/10 ensures that J∗

in the constant variance cases is on the same order of magnitude as those in the relative noise cases above
for all choices of d and δ that we have considered.

The variance of this data is
σ2 = E [β2ν2rη2j ] = β2ν2rE [η2j ] = β2ν2r

where E denotes the expectation. Therefore, we do have constant variance. Note further the resulting lack of
patterns in Figures 18 and 19. The suspicious looking phenomenon of many points on the line E = 0 is simply
because in the original data E is very close to zero most of the time. Figure 20 demonstrates graphically
the difference between relative noise and constant variance noise. The relative noise case is particularly
difficult in our inverse problem since most of our initial estimates are based on accurately determining the
peak locations, yet this is exactly where most of the relative noise is concentrated.

With constant variance, and further, assuming that each ηj is identically independently (normally) dis-
tributed, we have that (see [4]) in the limit as Ns →∞

q̂OLS ∼ N2
(

q0, σ
2
0

[

ST (q0)S(q0)
]−1

)

.

Here S(q̂) = ∂|E|
∂q

(q̂) which is an Ns × 2 matrix since q = (d, δ) and |E| is evaluated at Ns sample times.

Also, the scale parameter σ20 is approximately given by

σ20 =
1

Ns − 2

Ns
∑

i=1

(

|E(ti, 0; q0)| − |Êi|
)2

.

In the above equations, q0 denotes the theoretical “true” value of the parameter that best describes the
system from which the data is taken. Note that in this case, this is not necessarily the same as q∗ since the
method used to generate the data is different from the forward solve simulator. Therefore q0 is generally
unknown even in examples with simulated data.

As demonstrated in the previous sections, our q̂OLS is often a better minimizer than even the original value
of q∗, therefore we will approximate q0 in the above equations by q̂OLS . In particular, if we denote the covari-

ance matrix as C0 = σ20
[

ST (q0)S(q0)
]−1

, then we will approximate C0 by C = σ2OLS

[

ST (q̂OLS)S(q̂OLS)
]−1

,
where

σ2OLS =
1

Ns − 2

Ns
∑

i=1

(

|E(ti, 0; q̂OLS)| − |Êi|
)2

.
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We compute σ2OLS by multiplying our Jmin by an appropriate conversion factor, since they are defined in a
similar manner. However, in order to compute the partial derivatives with respect to d and δ in S we employ
forward differencing, which requires an additional forward simulation for each qj . For q̂ = q̂OLS we have, for
example

Si1 =
∂|E|
∂q1

(ti, 0; q̂) ≈
|E (ti, 0; [q̂1, q̂2])| − |E(ti, 0; [(1− hd)q̂1, q̂2])|

hdq̂1

and similarly for each Si2. In our computations we used the relative differencing factor of hd = 1 × 10−4.
One could also use a sensitivity equations approach (e.g., see [1] and the references therein), but since the
variational equations are quite difficult to solve for this example, we choose instead to approximate the
partials with respect to q directly with our simulations.

We also need to point out that while taking the absolute value of a function limits differentiability at a
small number of points, the derivative does exist almost everywhere. The absolute value function does not
change the magnitude of the derivative where it exists, which is what we need to compute the dot product
of S with itself. By using finite differences to estimate derivatives, we are essentially under-estimating at
the discontinuities. Under-estimating a few points out of thousands is not going to significantly change our
covariance matrix. (Alternatively, one could have defined the objective function by squaring the signals
instead of taking absolute values to avoid this problem. In this research we were interested in comparing J1
and J2 in previous sections above and changing the scale of E by squaring it would have prevented this.)

With S calculated, we can now evaluate C = σ2OLS

[

ST (q̂OLS)S(q̂OLS)
]−1

. Then the standard error for

q1 = d is estimated by
√
C11 while the standard error for q2 = δ is estimated by

√
C22. See Tables 5 through

12 for confidence intervals relating to various d∗, δ∗ and νr values. For example, in the case of d∗ = .02,
δ∗ = .0002 and with νr = .01 our covariance matrix is

C =

[

2.37122× 10−15 −4.43815× 10−15

−4.43815× 10−15 9.1829× 10−15

]

which results in the confidence intervals d ∈ (2.00004±4.86952×10−6)×10−2 and δ ∈ (1.9941±0.000958274)×
10−4.

The width of these bounds are ±0.000243471% and ±0.0480555% of the approximation value respectively.
For the d∗ = .02 case, the average size of the confidence intervals for νr = .01, .05, .1 respectively were
±.0002%,±.001%,±.002% (averaged over various δ∗ values ranging from .0001 to .0008). It is interesting that
the widths of the confidence intervals nearly exactly double, on average, when the noise level doubles. For the
d∗ = .04 case the average size of the confidence intervals were ±.0001%,±.0006%,±.001%. Likewise, when
the widths of the confidence intervals for δ∗ = .0002 are averaged over several various d∗ values (.02, .04, .08)
we get ±.05999%,±.2883%,±.5718% for νr = .01, .05, .1 respectively. For δ∗ = .0004 the averages are
±.03331%,±.1575%,±.3154%. In general, larger d∗ and δ∗ values have smaller (tighter) confidence intervals.
This suggests that the approximations found in these cases are better than those estimating small parameters.
While this is intuitive, it is not apparent looking at the estimates themselves or even the final objective
function values (see, for example, Table 4).
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Figure 16: Plots of the absolute value of the residual ri = |E(ti, 0; q̂OLS)|− |Êi| versus time ti when the data
contains relative random noise.
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Figure 17: Plots of the absolute value of the residual ri = |E(ti, 0; q̂OLS)| − |Êi| versus the absolute value of
the electric field E(ti, 0; q̂OLS) when the data contains relative random noise.
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Figure 18: Plots of the absolute value of the residual ri = |E(ti, 0; q̂OLS)|− |Êi| versus time ti when the data
contains constant variance random noise.
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Figure 19: Plots of the absolute value of the residual ri = |E(ti, 0; q̂OLS)| − |Êi| versus the absolute value of
the electric field E(ti, 0; q̂OLS) when the data contains constant variance random noise.
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Figure 20: The difference between data with relative noise added and data with constant variance noise
added is clearly evident when E is close to zero or very large.

27



δ d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)
.0002 (2.00005± 9.30284× 10−7)× 10−2 (4.00013± 1.62162× 10−6)× 10−2

.0004 (2.00001± 6.50411× 10−7)× 10−2 (4.00001± 1.19064× 10−6)× 10−2

.0008 (2.00001± 4.91232× 10−7)× 10−2 (4.00002± 9.05240× 10−7)× 10−2

Table 5: Confidence intervals for the OLS estimate of d when the data is generated with no noise (i.e.,
νr = 0.0).

δ d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)
.0002 (2.00004± 4.86952× 10−6)× 10−2 (4.00013± 5.69385× 10−6)× 10−2

.0004 (2.00001± 3.50259× 10−6)× 10−2 (4.00001± 4.02428× 10−6)× 10−2

.0008 (2.00001± 2.87772× 10−6)× 10−2 (4.00001± 3.32933× 10−6)× 10−2

Table 6: Confidence intervals for the OLS estimate of d when the data is generated with noise level νr = .01.

δ d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)
.0002 (2.00004± 2.41541× 10−5)× 10−2 (4.00014± 2.76640× 10−5)× 10−2

.0004 (2.00000± 1.68896× 10−5)× 10−2 (4.00001± 1.90853× 10−5)× 10−2

.0008 (2.00003± 1.40398× 10−5)× 10−2 (4.00000± 1.60390× 10−5)× 10−2

Table 7: Confidence intervals for the OLS estimate of d when the data is generated with noise level νr = .05.

δ d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)
.0002 (2.00000± 4.72903× 10−5)× 10−2 (4.00014± 5.48283× 10−5)× 10−2

.0004 (2.00003± 3.39327× 10−5)× 10−2 (4.00002± 3.87474× 10−5)× 10−2

.0008 (2.00003± 2.79911× 10−5)× 10−2 (4.00003± 3.19526× 10−5)× 10−2

Table 8: Confidence intervals for the OLS estimate of d when the data is generated with noise level νr = .1.
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δ d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)
.0002 (1.99272± 0.000182978)× 10−4 (1.98142± 0.000317616)× 10−4

.0004 (4.00035± 0.000201885)× 10−4 (4.00737± 0.000369841)× 10−4

.0008 (7.99833± 0.000136586)× 10−4 (8.00332± 0.000251291)× 10−4

Table 9: Confidence intervals for the OLS estimate of δ when the data is generated with no noise (i.e.,
νr = 0.0).

δ d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)
.0002 (1.99410± 0.000958274)× 10−4 (1.98029± 0.00111475)× 10−4

.0004 (4.00170± 0.00108740)× 10−4 (4.00667± 0.0012499)× 10−4

.0008 (7.99882± 0.000800042)× 10−4 (8.00486± 0.000923838)× 10−4

Table 10: Confidence intervals for the OLS estimate of δ when the data is generated with noise level νr = .01.

δ d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)
.0002 (1.99606± 0.00475672)× 10−4 (1.98106± 0.00541764)× 10−4

.0004 (4.00190± 0.00524360)× 10−4 (4.01214± 0.00593246)× 10−4

.0008 (7.99045± 0.00391181)× 10−4 (8.00947± 0.00444525)× 10−4

Table 11: Confidence intervals for the OLS estimate of δ when the data is generated with noise level νr = .05.

δ d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)
.0002 (2.00017± 0.00932701)× 10−4 (1.97674± 0.0107203)× 10−4

.0004 (4.00070± 0.0105331)× 10−4 (4.01229± 0.0120445)× 10−4

.0008 (7.99698± 0.00778563)× 10−4 (8.00361± 0.00886925)× 10−4

Table 12: Confidence intervals for the OLS estimate of δ when the data is generated with noise level νr = .1.
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6 Conclusion

In this presentation, we have explored a “proof of concept” formulation of an inverse problem to detect and
characterize voids or gaps inside of, or behind, a dielectric medium. We have simplified the problem to one
dimension and used Maxwell’s equations to model a pulsed, normally incident electromagnetic interrogating
signal. We use Finite Element discretization in space, and Finite Differences in time, to simulate the electric
field in the time domain. This is coupled with a Levenberg-Marquardt scheme in an optimization step with an
innovative cost functional appropriate for reflected waves where phase differences can produce ill-posedness
in the inverse problem when one uses the usual ordinary least squares criterion. We have successfully
demonstrated that it is possible to resolve gap widths on the order of .2mm between a dielectric slab of
20cm and a metal (perfectly conducting) surface using an interrogating signal with a 3mm wavelength.

Future work on this problem will likely involve more efficient computational methods since currently the
inverse problem involving a 20cm slab takes 10 hours. Further, more sophisticated models for describing
the polarization mechanisms in non-homogeneous materials must be developed. Finally, in order to take
scattering and non-normally incident electromagnetic signals into account, multi-dimensional models will be
necessary.
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